CATALYZING A SUSTAINABLE RENAISSANCE OF AMERICAN MINING

Dr. Douglas Wicks doug.wicks@hq.doe.gov

It's time to wake up!!

What am I going to talk about?

- ►A bit about ARPA-E
- A peek into the abyss
- A look at white spaces for those who are not faint of heart

https://elements.visualcapitalist.com/a-lifetimes-consumption-of-fossil-fuels-visualized/

Visual Capitalist

Most importantly

- I'm here to start a conversation
- I don't have the answers
- But do know
 - -Business as usual won't cut it and
 - My generation isn't going to solve the problem
- I'm looking for your **bold** suggestions Btw - This is not an official view of the DOE or ARPA-E

Who, what and how do we fund?

Who?

• Academics, big companies, small companies, National Labs

What?

Transformative projects

How?

- CRADAs through programs
- Grants through special topics
- SBIR/STTR (we call SEED)

THE ABYSS

The Climate

The Last 8 Years Have Been the Warmest on Record

Global land and ocean surface temperature anomalies (degrees Celsius compared to the 20th century average)

* 2022 figure refers to the temperature anomaly for January through September Source: NOAA

Could T depend on [CO₂]?

Climatic Change: Are We on the Brink of a Pronounced Global Warming?

WALLACE S. BROECKER Authors Info & Affiliations

SCIENCE · 8 Aug 1975 · Vol 189, Issue 4201 · pp. 460-463 · DOI: 10.1126/science.189.4201.46

CO₂ and 2°C

Note: This is a notional scenario consistent with an at least 66 percent chance of limiting global warming to below 2°C. Some residual gross greenhouse gas emissions (both CO₂ and non-CO₂) will remain at the end of the century even with ambitious climate action because they are too difficult or costly to remove entirely. Once negative emissions exceed those that remain net zero emissions is reached.

Source: Adapted from a visual in The UNEP Gap Report 2017 (Figure 7.2)

We have the Tech for Clean Energy

So, what's wrong?

In the Beginning...

There are mountains and rocks

Then comes everything for the energy transition

We need to move "from BIG Oil to BIG Shovels"

- Daniel Yergin

The Earth's natural resources power our everyday lives. VC Elements breaks down the building blocks of the universe.

We live in a material world.

Metals required for EV's and Clean Energy

Source: IEA (2021), The Role of Critical Minerals in Clean Energy Transitions, IEA, Paris. Chart for illustrative purposes only.

Another Challenge: will hydrogen meet the moment?

Overhauling an entire industry in 30 years...

15

Some might say "why can't we just dig more?"

Easy stuff has been mined Ore is lower quality

Local & regional ecosystem fragility Community willingness to host

Societal avoidance of resource extraction ... and demand for resource-rich technology

The US Not a Player

CHANGING WHAT'S POSSIBLE

		ARSENIC (all forms)	100	China, Morocco, Belgium	
		ASBESTOS	100	Brazil, Russia	
		CESIUM	100	Canada	
		FLUORSPAR	100	Mexico, Vietnam, South Africa, China	
		GALLIUM	100	China, United Kingdom, Germany, Ukraine	
		GRAPHITE (natural)	100	China, Mexico, Canada, India	
	Manganaca 100%	INDIUM	100	China, Canada, Republic of Korea, Taiwan	
		MANGANESE	100	South Africa, Gabon, Australia, Georgia	
	6	MICA, sheet (natural)	100	China, Brazil, Belgium, Austria	
		NEPHELINE STENILE	100	Canada Deselli Canada Durala Comorciu	
	Rare Farths 100%	NIOBIOM (coumbium) PARE EARTHS ³ (compounds and motel)	100	Chipa Estapla, Idaga Malaunia	
		PUBIDIUM	100	Canada	
		SCANDUM	100	Europe China Japan Russia	
		STRONTIUM	100	Mexico, Germany China	
		TANTALUM	100	Rwanda Brazil Australia Congo (Kinshasa)	
		YTTRIUM	100	China Estonia Republic of Korea Japan	
		GEMSTONES	99	India, Israel, Belgium, South Africa	
		BISMUTH	96	China, Belgium, Mexico, Republic of Korea	
	$M_{\rm exp} = d_{\rm exp} = 0.10$	TELLURIUM	>95	Canada, China, Germany	
	vanadium 94%	VANADIUM	94	Austria, Canada, Russia, Republic of Korea	
		TITANIUM MINERAL CONCENTRATES	93	South Africa, Australia, Canada, Mozambique	
		POTASH	91	Canada, Russia, Belarus, Israel	
		DIAMOND (industrial stones)	88	India, South Africa, Botswana, Australia	
		BARITE	87	China, India, Morocco, Mexico	
		ZINC (refined)	87	Canada, Mexico, Australia, Peru	
		TITANIUM (sponge)	86	Japan, Kazakhstan, Ukraine, China, Russia China, Thailand, Balalum, India	
		PHENILIM	82	Chile, Germany, Kezekhsten, Canada	
		STONE (dimension)	81	China, Brazil, Italy, Turkey	
	Cohalt 78%	COBALT	78	Norway, Japan, China, Canada	
		TIN (refined)	77	Indonesia, Malavsia, Peru, Bolivia	
	000/ . f	ABRASIVES, fused Al oxide (crude)	>75	China, Hong Kong, France, Canada	
	>90% of dase metal is	BAUXITE	>75	Jamaica, Brazil, Guinea, Guyana	
		CHROMIUM	72	South Africa, Kazakhstan, Russia	
	imported	PEAT	70	Canada	
	iniporteu	SILVER	68	Mexico, Canada, Peru, Poland	
		GARNET (industrial)	64	Australia, India, South Africa, China	
		PLATINUM	64	South Africa, Germany, Italy, Russia	
	Magnaaium 52%	MACNESILIM COMPOLINDS	54	China Conada Australia Hong Kong	
		ABRASIVES eilicon carbide (crude)	>50	China, Caliada, Adstralia, Hong Kong China, South Africa, Netherlande, Hong Kong	
	Ū	GERMANIUM	>50	China Belgium Germany Russia	
		IODINE	>50	Chile, Japan	
		IRON OXIDE PIGMENTS (natural and synthetic)	>50	China, Germany, Brazil, Canada	
Maximum US		TUNGSTEN	>50	China, Bolivia, Germany, Spain	
		DIAMOND (industrial dust, grit, and powder)	50	China, Ireland, Republic of Korea, Russia	
Dolianco on		CADMIUM	<50	China, Australia, Canada, Peru	
Reliance on	NICKEI 47%	MAGNESIUM METAL	<50	Israel, Canada, Mexico, United Kingdom	
		NICKEL	47	Canada, Norway, Australia, Finland	
UII/Gas Imports	of alace 1 nickel is imported	SILICON (metal and ferrosilicon)	41	Russia, Brazil, Canada Conedo, Chino, Indio, Einland	
	of class i flickel is illiported	COPPER (refined)	35	Chile Canada Mexico	
$W_{22} 20\%$ in 2005	_	PALLADIUM	32	South Africa, Russia, Germany, Italy	
vvas 30 % III 2003		LEAD (refined)	30	Canada, Mexico, Republic of Korea, India	
		SALT	29	Chile, Canada, Mexico, Egypt	
		PERLITE	28	Greece, China, Mexico	
	Lithium 25%	LITHIUM	>25	Argentina, Chile, China	
		BROMINE	<25	Israel, Jordan, China	
	*100% of battory grade	SELENIUM	<25	China, Philippines, Mexico, Germany	
arpa·e	i ou % of ballery grade	USGS 2021 <u>Mineral Co</u>	USGS 2021 <u>Mineral Commodity Summaries 2021 (usgs.gov)</u>		

Commodity

7

Remember, this is for just the first generation of units.

LOG

SCALE!

3

They will wear out in **10 to 25 years**, after which they will need to be replaced

- Total metal required produce one generation of EV's, batteries, wind turbines & solar panels (using 4 weeks buffer wind & solar)
- Total metal required produce one generation of EV's, batteries, wind turbines & solar panels (using 48 hours buffer wind & solar)
- □ Reported Global Reserves 2022 (Source: USGS)

■ Global Metal Production 2019 (Source: USGS)

From Simon Michaux - GTK

Mining – How much are we talking about?

Ε

https://www.visualcapitalist.com/all-the-metals-we-mined-in-2021-visualized/

How much do we have to dig?

How much do we dig for our metals?

https://www.wired.com/2014/09/these-giant-copper-orbs-show-just-how-much-metal-comes-from-a-mine/

VISUALIZING THE SIZE OF THE WORLD'S MINE TAILINGS

Tailings are what is left over after economic minerals are separated from mined rock. They comprise ground rock material and liquid waste from mineral processing plants.

They are fine particles mixed with water, forming a slurry that is stored in ponds or dams. The volume of **GLOBAL TAILINGS**

Height 6 km Volume 217.3 km³ Weight 282.5 billion tonnes

The Global Tailings Review estimates that the total number active, inactive and closed storage facilities is 8.500 with 217km³ of tailings. enough to fill a cube 6km high.

GLOBAL TAILINGS

Height 6 km Volume 217.3 km³

Weight 282.5 billion tonnes 1 Bt of Cu=100+Bt of ore = 99+ Bt of tailings and ?? Bt of waste rock

aroque more tailings than others. The type, quality.

Source: Global Tailings Review, ICMM, UNEP, PRI Note: Tailing facility estimates come from using the reported number of facilities projected to global commodity production using USGS mineral commodity production estimates.

https://elements.visualcapitalist.com/visualizing-the-size-of-mine-tailings/

We live in a material world.

Some metals produce more tailings than others. The type, quality, quantity and production decisions of mineral deposits determine

elements.visualcapitalist.com

THE FUTURE

What do we need to do?

- Just doing more of the same is not an option
 - Environmental impact
 - Ore bodies
 - No social license

- What the future must deal with?
 - Environment
 - GHG footprint of mining
 - Dealing with wastes
 - Economy
 - High energy usage
 - Use low quality ores
 - Society

Leveraging Accelerated CO₂ Mineralization

Note this is an active ARPA-E program

Mineralization is a Natural Process that Sequesters CO₂

http://butane.chem.uiuc.edu/pshapley/Environmental/L29/2.html

CHANGING WHAT'S POSSIBLE

Nature's way takes WAY TOO MUCH time

- literally eons
- Basically reaction of ambient CO₂ and water with rocks
- Locks CO2 away as stable carbonates

How Improved Element Extraction Will be Accomplished

Convert components of low-grade ores containing ER elements from harder to process forms to easier forms

NiX = ferro nickel (35% Ni, 65% Fe), nickel oxides (NiO), pure nickel. NiO thermodynamically favorable over NiCO₃

- Easier mineral classification and beneficiation
- Reduced energy needs
- Different chemical pathway(s) for element liberation
- Potential additional products

MINER Summary

Program Goals:

- Develop net GHGe negative technologies that utilize the reactive potential of CO₂-reactive ore bodies
- While decreasing comminution energy and
- Increase the domestic supplies of critical metals

MINER Summary (cont'd): Ex. of Net Negative Process Flows

Impact of Carbonation

- Improved operations
 - Comminution
 - Mineral recovery

Sequestration of CO₂ = Scope1/2/3

Stabilization of process waste

https://pubs.rsc.org/en/content/articlelanding/2013/ra/c3ra44007a

Valorizing Everything that is Extracted

Perhaps take hike to a tailings pile?

What is in the tailings pile?

For Cu – typically Ca/Mg/Fe/Al/Si

All stuff that is mined somewhere else

We need methods for mineral fractionation

- All of the elements in a tailings pile are mined elsewhere
- Can you imagine treating it like an oil refinery? Valorizing every atom and molecule
- If we stack value, like a refinery, does it release the full value?

Impact of Using Everything

► No tailings

- Not digging another hole for something that is recovered
- Stacking of value to maximize return from the operations

Precision In-situ Mining

Inspiration from Laparoscopic and Arthroscopic Surgery

Laparoscopy - a surgical procedure in which a fiber-optic instrument is inserted through the abdominal wall to view the organs in the abdomen or to permit a surgical procedure

Arthroscopy (ahr-THROS-kuh-pee) is a procedure for diagnosing and treating joint problems. A surgeon inserts a narrow tube attached to a fiber-optic video camera through a small incision — about the size of a buttonhole. The view inside your joint is transmitted to a highdefinition video monitor.

Drill down to ore body and remove only what one wants

Drill down to the ore of interest

- Btw, you need to know where it is...
- Remove the metal
 - In situ leach or
 - Dissolve and pull or
 - Mechanically pulverize

No more digging – a new environmentally friendly way of mining

https://miningzimbabwe.com/no-more-digging-a-new-environmentally-friendly-way-of-mining/

Impact of Precision Extraction

No removal of overburden

- No big hole to be filled
- No humans in the subsurface
- Minimized impact on aquifers

Harnessing Geologic Hydrogen

Maybe you should be interested in Old Faithful?

- High concentrations of H₂ found in Yellowstone thermal zones
- Geyser water is basically saturated with H₂. Higher concentrations in the head space.
- Diverse community of hydrogen consuming extremophiles

Whence Hydrogen from the Earth

- Very complex chemical cycles
- Both Fe(II) oxidative and radioactive sources in play
- This fits conventional wisdom that high pressure and temperatures required.

Environ Microbiol 2019 Oct;21(10):3816-3830

Geologic Hydrogen

H₂ resources likely **"infinite"** relative to human usage.

Reservoirs could be explored and potentially stimulated to produce zero-emissions $H_2^{1, 2, 3}$ in-situ.

Most potential

1: Larin 1993 2: Zgonnik 2020 3: Moretti et al., 2021

Example: In-situ Mineralization

Serpentinization Basics

- Serpentinization occurs in mafic-ultramafic rock
 - The most common rock type in earth's crust •
- Ultramafic rocks have low Si activity, and the activity of oxygen is prevented from dropping to very low values by the fayalite (olivine)-magnetite-quartz buffer
- Under these conditions water is capable of ٠ oxidizing Fe²⁺:

olivine

magnetite water

quartz hydrogen

December 15, 2022

Reservoir Conditions reducing conditions ~200 °C ~10 MPa

So, why connect H₂ to mining?

- ► Well, it involves rocks
- Avoids mining other things
 - Platinum Group Elements
 - Materials for e⁻ generation
 - Materials for the grid+storage
- GeoH2 is a primary fuel NOT an energy carrier.

What else is needed to solve this massive problem?

- Finding what's in the ground
- Drilling deep, fast and cheap
- Deep earth engineering
- Ability to fracture rock with accuracy
- Water management techniques!!!!
 - Water-free processes?
- Mine restoration/remediation
- And much more

"The climate system is an angry beast and we are poking it with sticks."

Wallace "Wally" Smith Broecker was one of the first ones to raise warnings on climate change and popularized the term "Global Warming". He was also one of the masterminds behind the Carbfix project.

So, what are your bold solutions?

It's time to wake up!!